04.11.2022
Rocks and Minerals

In discussing the components of the earth's crust, it is important to distinguish between rocks and minerals. A mineral is a naturally occurring crystalline substance of a definite range of chemical composition. A rock is a mixture of minerals, usually in the form of grains that may be easily visible or microscopic. The most common rock minerals are silicates-crystalline compounds composed largely of silicon in chemical combination with aluminium, magnesium, oxygen, and other common elements.

Igneous rocks are those that cool and solidify from a molten state. They are classified by chemical composition and grain size. These characteristics, in turn, depend on the elements present in the magma and on how long they cool-the longer the cooling time, the larger the crystals.

Rocks that are exposed at the surface of the earth are subject to weathering by climatic agents, especially water. Water breaks down solid rock by changing it chemically, by dissolving some of its minerals, by supporting the growth of plants and animals that grow on and around rock, and by freezing and expanding to wedge the rock apart. Running water then carries fragments of rock and soil to sedimentary basins-low places where sediments can accumulate, sometimes to a depth of several miles. The weight of the accumulating sediments compresses and bonds the deeper beds into layers of sedimentary rock.

Any type of rock that is buried deeply enough or otherwise subjected to great pressure, stress, or heat can become transformed both chemically and physically into another kind of rock: metamorphic rock. For instance, shale, a crumbly sedimentary rock made of clay, can be changed by heat and pressure into hard metamorphic slate. Slate, or any other rock, can in turn be heated until it melts and then cooled into fresh igneous rock, or it can be broken down by weathering so that it contributes to the formation of new sedimentary rock. The principles involved in the transformation of one type of rock into another are illustrated by the rock cycle.

Two of the most important characteristics of sedimentary rocks, attributes that are rarely found in igneous and metamorphic rock, are their porosity and permeability.

Porosity is the amount of empty space present within the rock; it is usually expressed as a percentage of total rock volume.

Permeability is a measure of the ease with which a fluid flows through the connecting pore spaces of a rock; the more connections between pores, the higher the permeability.

Porosity and permeability are of supreme importance to the geologist in determining whether a body of rock can contain petroleum and whether that petroleum can be extracted and brought to the surface.

515 Views 0 Comments Read more
03.11.2022
Plate Tectonics

The young earth's molten surface was in constant motion, like the lava in an active volcano today. As a solid crust began to form, it was carried about on the surface by the moving magma beneath. Although this crust has grown thicker and stronger over time, it is still in motion atop the moving mantle.

The crust is divided by a world-wide system of faults, trenches, and mid ocean ridges into six major plates and many minor plates that fit together like the pieces of a jigsaw puzzle, as you can see on the image.

These plates, however, move and change shape. In some places, they slide past one another; in others, they collide or move apart. The theory that explains how these processes work to shape the crust is called plate tectonics.

The earth's surface consists of two kinds of crust. Oceanic crust is thin (about 5 to 7 miles) and dense. The rock that makes up the continents, however, is thick (10 to 30 miles) and relatively light. A continent rises high above the surrounding oceanic crust and extends deeper into the mantle-like an iceberg in a frozen-over sea.

Sometimes a plate splits and begins moving apart. This is the way ocean basins are formed. The picture on the left shows a rift forming in the middle of a continent. As the two parts of the continent pull away from each other, magma rises from the mantle and solidifies in the gap, forming a mid ocean ridge. New crust being thinner but denser than the continents spreads outward between the two "daughter" continents. The Atlantic Ocean was born in just this way about 200 million years ago when North and South America split away from Europe and Africa.

Where plates meet head on, several things can happen. If oceanic crust meets oceanic crust, one plate is subducted that is, it slips beneath the edge of the other plate and descends into the mantle, forming a trench in the ocean floor. The descending plate is melted by the hot mantle in the subduction zone. Some of its minerals melt at lower temperatures than others and rise through the crust as magma, which may either cool and solidify within the crust, forming igneous rock such as granite, or reach the surface as volcanic lava.

If one of the converging plates is made up of continental crust, it overrides the heavier oceanic plate, which bends downward in a trench along the continental margin. When this happens, magma from the descending plate may erupt in continental volcanoes like Mount St. Helens. If both of the plates are continental, the collision buckles and folds the rocks including the sedimentary rocks at the edges of the continents-into great mountain ranges like the Himalayas.

431 View 0 Comments Read more
02.11.2022
Geologic Time

Geologists now obtain close estimates of the age of rocks by measuring their radioactivity. Naturally occurring radioactive elements, such as uranium, change at a measurable rate into other elements, such as lead. By measuring the proportions of different forms of lead, scientists can tell about how much time has passed since a rock was formed. Using such methods, geologists have radically changed our ideas about the age of the planet.

Even the ten million years that it took to carve the Grand Canyon is but the most recent moment of geologic history. The earth was formed about 4.6 billion years ago when frozen particles and gases circling a new yellow star were brought together by mutual gravitational attraction. Heated by compression and radioactivity, this material formed a molten sphere.

The heaviest components, mostly iron and nickel, sank to the center and became the earth's core. Lighter minerals formed a thick, molten mantle, while minerals rich in aluminum, silicon, magnesium, and other light elements cooled and solidified into a thin, rocky crust./span>

The surface of the young planet was an inhospitable place. Molten rock (magma) erupted everywhere through fissures and volcanoes, expelling the gases and water vapor that formed the early, oxygen less atmosphere. As the surface cooled, rain condensed and fell in torrents, and the first oceans began to form.

The earth was devoid of life for perhaps its first billion years. Eventually, out of a mixture of complex carbon-chain chemicals, the first self-replicating molecules appeared in the ocean, perhaps in the muck of some shallow lagoon. Over millions of years these primitive organisms grew more complex and varied, first as single-celled bacteria like forms, later as microscopic protozoa and algae. Some grew in the form of colonies, which over further millions of years evolved into more complex organisms. AsGeologic Time photosynthetic single-celled plants, which used carbon dioxide and gave off oxygen, became more abundant, their waste oxygen became a major constituent of the atmosphere.

Few traces of this early life survive, however. Although plant remains and impressions of primitive organisms can be found, it was about 4 billion years before animal life became abundant enough (and developed body parts durable enough) to leave significant numbers of fossils. This early, fossil-poor period, comprising most of the time since the earth formed, is commonly known as the Precambrian era.

The last 600 million years of earth's history comprise the time of abundant life. The first fish appeared about 500 million years ago in the early Palaeozoic era, followed by the first land plants, amphibians, and reptiles. The Mesozoic (220 to 65 million years ago) was the era of the dinosaurs, early mammals, and primitive birds. And the Cenozoic era embraces the time from the extinction of dinosaurs through the recent ice ages to the present.

Geologic Time 3Here on the right you can see a cross section of Earth illustrating the core; mantle and crust. The enlarged position shows the relationship between the lithosphere, composed of the continental crust, oceanic crust and upper mantle and the underlying asthenosphere and lower mantle.

And on the left, have a look at the cross section of Earth showing the various layers and their average density. The crust is divided into a continental and oceanic portion. Continental crust is 20 to 70 km thick, oceanic crust is 5 to 10 km thick.

400 Views 0 Comments Read more
01.11.2022
Introduction to Exploration

Let us have some talk about the offshore exploration of the hydrocarbons, i.e. oil and gas, in general. We are so happy to introduce the series of articles shedding some light on this interesting subject.

The readers will get to know so much more about the basic geology for a start, and after that we will start diving deeper and deeper in the drilling equipment and technology, from the very beginnings and up to such modern types as directional drilling. All systems and machinery pieces on board rigs will be explained in detailed, with the supporting images and videos, whenever required.

Spend some time reading these articles and make sure you have checked all of them, and we promise that you will see that your knowledge and understanding of the drilling technology and associated equipment and techniques has sufficiently expanded.

In the petroleum industry, which finds and recovers oil and gas from deep within the earth's crust, geology is fundamental. Petroleum occurs mostly in isolated, hard-to-find accumulations. The scientific study of the earth's history and its life, especially as recorded in the rocks of the crust, reduces the risk of drilling dry holes and lowers the cost of production by helping determine the most efficient way of drilling a well.

Knowledge of geology increases the total supply of petroleum by helping recover more of the resource in place. Petroleum geologists are most concerned with rocks formed in the earth's surface by processes closely associated with both climate and life. The way these rocks are created and changed, as well as how oil and gas form and accumulate in them, are the principal concern of the petroleum geologist. For a thorough understanding of these processes, it is necessary to look back in time-first, to the beginning of the modern science of geology; then, to the beginning of the earth itself.

Ancient geologists believed that the earth had been created all at once, complete with all its mountains, canyons, and oceans, in a single great cataclysm. In the 1700s, though, scientists began to understand that familiar natural processes, such as the accumulation and erosion of sediment, and "minor" cataclysms, such as earthquakes and volcanic eruptions, could account for all the features of the earth's crust-given enough time. Thus the doctrine of catastrophism was eventually supplanted by the theory of gradualism or uniformitarianism meaning, as Scottish geologist James Hutton put it two centuries ago, that "the present is the key to the past."

This concept of gradual change is central to modern geology. Today's geologists know that the Grand Canyon is the work of a powerful erosive agent, the Colorado River, over some ten million years, as you can see on the picture; that the Himalayas and the Sierra Nevada are growing loftier by a fraction of an inch each year, and have been doing so for millions of years; that Africa and America are moving away from each other about as fast as a fingernail grows.

387 Views 0 Comments Read more
25.11.2017
First Offshore Operations in the United States

In the United States, all offshore oil and gas operations began in the late 19th century. It was Edwin Drake who drilled the very first oilwell in the America in 1859. He did it on a piece of land near Titusville, Pennsylvania. It was only thirty-eight years later, in 1897, that another enthusiast drilled the first offshore well in U.S. He drilled it offshore Southern California, immediately south of Santa Barbara...

   In the late 1800s, a group of people founded the town of Summerland, California. The founders picked the site because of its pleasant, sunny climate. Coincidentally, it also had numerous springs. These springs did not, however, produce water; natural gas and crude oil bubbled out of them...

1031 View 0 Comments Read more
Enter the site
Read Later

    The "Read Later" function allows you to add material to this block with just one click. Just click on the icon and read the articles that interest you at any convenient time.

Top Posts
Rate my site