02.11.2022
Geologic Time

Geologists now obtain close estimates of the age of rocks by measuring their radioactivity. Naturally occurring radioactive elements, such as uranium, change at a measurable rate into other elements, such as lead. By measuring the proportions of different forms of lead, scientists can tell about how much time has passed since a rock was formed. Using such methods, geologists have radically changed our ideas about the age of the planet.

Even the ten million years that it took to carve the Grand Canyon is but the most recent moment of geologic history. The earth was formed about 4.6 billion years ago when frozen particles and gases circling a new yellow star were brought together by mutual gravitational attraction. Heated by compression and radioactivity, this material formed a molten sphere.

The heaviest components, mostly iron and nickel, sank to the center and became the earth's core. Lighter minerals formed a thick, molten mantle, while minerals rich in aluminum, silicon, magnesium, and other light elements cooled and solidified into a thin, rocky crust./span>

The surface of the young planet was an inhospitable place. Molten rock (magma) erupted everywhere through fissures and volcanoes, expelling the gases and water vapor that formed the early, oxygen less atmosphere. As the surface cooled, rain condensed and fell in torrents, and the first oceans began to form.

The earth was devoid of life for perhaps its first billion years. Eventually, out of a mixture of complex carbon-chain chemicals, the first self-replicating molecules appeared in the ocean, perhaps in the muck of some shallow lagoon. Over millions of years these primitive organisms grew more complex and varied, first as single-celled bacteria like forms, later as microscopic protozoa and algae. Some grew in the form of colonies, which over further millions of years evolved into more complex organisms. AsGeologic Time photosynthetic single-celled plants, which used carbon dioxide and gave off oxygen, became more abundant, their waste oxygen became a major constituent of the atmosphere.

Few traces of this early life survive, however. Although plant remains and impressions of primitive organisms can be found, it was about 4 billion years before animal life became abundant enough (and developed body parts durable enough) to leave significant numbers of fossils. This early, fossil-poor period, comprising most of the time since the earth formed, is commonly known as the Precambrian era.

The last 600 million years of earth's history comprise the time of abundant life. The first fish appeared about 500 million years ago in the early Palaeozoic era, followed by the first land plants, amphibians, and reptiles. The Mesozoic (220 to 65 million years ago) was the era of the dinosaurs, early mammals, and primitive birds. And the Cenozoic era embraces the time from the extinction of dinosaurs through the recent ice ages to the present.

Geologic Time 3Here on the right you can see a cross section of Earth illustrating the core; mantle and crust. The enlarged position shows the relationship between the lithosphere, composed of the continental crust, oceanic crust and upper mantle and the underlying asthenosphere and lower mantle.

And on the left, have a look at the cross section of Earth showing the various layers and their average density. The crust is divided into a continental and oceanic portion. Continental crust is 20 to 70 km thick, oceanic crust is 5 to 10 km thick.

764 Viewing 0 Comments Read more
01.11.2022
Introduction to Exploration

Let us have some talk about the offshore exploration of the hydrocarbons, i.e. oil and gas, in general. We are so happy to introduce the series of articles shedding some light on this interesting subject.

The readers will get to know so much more about the basic geology for a start, and after that we will start diving deeper and deeper in the drilling equipment and technology, from the very beginnings and up to such modern types as directional drilling. All systems and machinery pieces on board rigs will be explained in detailed, with the supporting images and videos, whenever required.

Spend some time reading these articles and make sure you have checked all of them, and we promise that you will see that your knowledge and understanding of the drilling technology and associated equipment and techniques has sufficiently expanded.

In the petroleum industry, which finds and recovers oil and gas from deep within the earth's crust, geology is fundamental. Petroleum occurs mostly in isolated, hard-to-find accumulations. The scientific study of the earth's history and its life, especially as recorded in the rocks of the crust, reduces the risk of drilling dry holes and lowers the cost of production by helping determine the most efficient way of drilling a well.

Knowledge of geology increases the total supply of petroleum by helping recover more of the resource in place. Petroleum geologists are most concerned with rocks formed in the earth's surface by processes closely associated with both climate and life. The way these rocks are created and changed, as well as how oil and gas form and accumulate in them, are the principal concern of the petroleum geologist. For a thorough understanding of these processes, it is necessary to look back in time-first, to the beginning of the modern science of geology; then, to the beginning of the earth itself.

Ancient geologists believed that the earth had been created all at once, complete with all its mountains, canyons, and oceans, in a single great cataclysm. In the 1700s, though, scientists began to understand that familiar natural processes, such as the accumulation and erosion of sediment, and "minor" cataclysms, such as earthquakes and volcanic eruptions, could account for all the features of the earth's crust-given enough time. Thus the doctrine of catastrophism was eventually supplanted by the theory of gradualism or uniformitarianism meaning, as Scottish geologist James Hutton put it two centuries ago, that "the present is the key to the past."

This concept of gradual change is central to modern geology. Today's geologists know that the Grand Canyon is the work of a powerful erosive agent, the Colorado River, over some ten million years, as you can see on the picture; that the Himalayas and the Sierra Nevada are growing loftier by a fraction of an inch each year, and have been doing so for millions of years; that Africa and America are moving away from each other about as fast as a fingernail grows.

756 Views 0 Comments Read more
25.11.2017
First Offshore Operations in the United States

In the United States, all offshore oil and gas operations began in the late 19th century. It was Edwin Drake who drilled the very first oilwell in the America in 1859. He did it on a piece of land near Titusville, Pennsylvania. It was only thirty-eight years later, in 1897, that another enthusiast drilled the first offshore well in U.S. He drilled it offshore Southern California, immediately south of Santa Barbara...

   In the late 1800s, a group of people founded the town of Summerland, California. The founders picked the site because of its pleasant, sunny climate. Coincidentally, it also had numerous springs. These springs did not, however, produce water; natural gas and crude oil bubbled out of them...

1479 Views 0 Comments Read more
« 1 2